首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3535篇
  免费   467篇
  国内免费   214篇
电工技术   138篇
综合类   227篇
化学工业   305篇
金属工艺   86篇
机械仪表   77篇
建筑科学   221篇
矿业工程   64篇
能源动力   1138篇
轻工业   52篇
水利工程   99篇
石油天然气   68篇
武器工业   14篇
无线电   685篇
一般工业技术   563篇
冶金工业   61篇
原子能技术   21篇
自动化技术   397篇
  2024年   9篇
  2023年   202篇
  2022年   284篇
  2021年   289篇
  2020年   280篇
  2019年   286篇
  2018年   205篇
  2017年   203篇
  2016年   149篇
  2015年   149篇
  2014年   211篇
  2013年   215篇
  2012年   228篇
  2011年   219篇
  2010年   151篇
  2009年   163篇
  2008年   133篇
  2007年   148篇
  2006年   115篇
  2005年   99篇
  2004年   63篇
  2003年   80篇
  2002年   65篇
  2001年   49篇
  2000年   57篇
  1999年   30篇
  1998年   31篇
  1997年   29篇
  1996年   8篇
  1995年   13篇
  1994年   16篇
  1993年   11篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   3篇
  1983年   1篇
排序方式: 共有4216条查询结果,搜索用时 15 毫秒
21.
In this work, we explore the application potential of AsP/M2CO2 (M = Sc, Zr) van der Waals heterostructures in photocatalytic water splitting through the first-principles calculations. The calculated results show that AsP/Zr2CO2 heterostructure possesses an unfavorable type-Ⅰ band alignment, whereas AsP/Sc2CO2 exhibits a desirable type-Ⅱ band alignment, which is beneficial for separating the photogenerated electron-hole pairs. Also, the band edge positions of AsP/Sc2CO2 heterostructure stride the redox potential of water, ensuring favorable reaction kinetics. Besides, the strong optical absorption of AsP/Sc2CO2 heterostructure in both visible and ultraviolet regions (especially up to 10−6 cm−1 at about 250 nm) makes it possible to utilize solar energy effectively. Meanwhile, AsP/Sc2CO2 heterostructure has an exciton binding energy as low as 0.09 eV, which quantitatively illustrates the high separation efficiency of photogenerated charge carrier. Thus, the type-Ⅱ band alignment, suitable band edge position, strong light absorption, and low exciton binding energy together indicate that AsP/Sc2CO2 heterostructure is a potential photocatalytic material. In addition, the obvious redshift phenomenon in the optical spectrum of AsP/Sc2CO2 heterostructure shows that biaxial strain can improve its light capture capability. Also, the interconversion between type-Ⅱ and type-Ⅰ can be achieved by applying different strains. All these findings suggest that the novel AsP/Sc2CO2 heterostructure has significant application prospects in next-generation photovoltaic and photocatalytic devices.  相似文献   
22.
To meet the demand of producing hydrogen at low cost, a molybdenum (Mo)-doped cobalt oxide (Co3O4) supported on nitrogen (N)-doped carbon (x%Mo–Co3O4/NC, where x% represents Mo/Co molar ratio) is developed as an efficient bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). This defect engineering strategy is realized by a facile urea oxidation method in nitrogen atmosphere. Through X-ray diffraction (XRD) refinement and other detailed characterizations, molybdenum ion (Mo4+) is found to be doped into Co3O4 by substituting cobalt ion (Co2+) at tetrahedron site, while N is doped into carbon matrix simultaneously. 4%Mo–Co3O4/NC is the optimized sample to show the lowest overpotentials of 91 and 276 mV to deliver 10 mA cm?2 for HER and OER in 1 M potassium hydroxide solution (KOH), respectively. The overall water splitting cell 4%Mo–Co3O4/NC||4%Mo–Co3O4/NC displays a voltage of 1.62 V to deliver 10 mA cm?2 in 1 M KOH. The Mo4+ dopant modulates the electronic structure of active cobalt ion (Co3+) and boosts the water dissociation process during HER, while the increased amount of lattice oxygen and formation of pyridinic nitrogen due to Mo doping benefits the OER activity. Besides, the smaller grain size owing to Mo doping leads to higher electrochemically active surface area (ECSA) on 4%Mo–Co3O4/NC, resulting in its superior bifunctional catalytic activity.  相似文献   
23.
Hydrogen generation through solar-water splitting is expected to address the global energy crisis by providing a source for a safer and sustainable alternative fuel. Herein, we report a facile synthesis of Cu2O nanowires and show that the magnetic field could influence the nanowires’ distribution and alignment. Orientation of nanowires was observed to become more inclined towards the magnetic field lines as the values of full-width at half maximum decreased from 140° to 46.2° with the increase in the field strength. Crystallographic, morphological, optoelectronic, and photoelectrochemical properties of the constructed p-n homojunction were analyzed by using different characterization techniques. A high built-in potential of +0.93 V vs. RHE was observed for a 50 nm layer of n-Cu2O over p-Cu2O nanowires that resulted in a significantly high photocurrent density of −7.42 mA/cm2. The stability in the photoelectrochemical medium was maintained for 14 h, generating 20 mmol/cm2 of H2.  相似文献   
24.
Water splitting is an effective way to produce hydrogen to solve the energy crisis problem, and inorganic metal compounds are widely used in electrocatalysis field due to efficient hydrogen evolution reaction (HER). Herein, we synthesize Ni2V2O7 dandelion microsphere from nickel nitrate and vanadium pentoxide by “one-step hydrothermal” way, which exhibits large specific surface area of 102.74 m2 g−1. The as-prepared Ni2V2O7 microsphere shows good electrocatalysis performances including OER overpotential of 358 mV and good stability, as well as HER overpotential of 195 mV. Furthermore, the Ni2V2O7 microsphere electrode is assembled to Ni2V2O7 microsphere//Ni2V2O7 microsphere system, showing the water splitting voltage of 1.50 V at 10 mA cm−2 by two-electrode method, which is much lower than those of commercial RuO2//Pt/C system and most of spinel oxides electrocatalysts. Our work opens up a new and facile avenue for fabricating inorganic microsphere electrocatalyst in hydrogen production field.  相似文献   
25.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   
26.
Hydrogen production through water splitting is an efficient and green technology for fulfilling future energy demands. Carbon nanotubes (CNT) supported Ni2P has been synthesized through a simpler hydrothermal method. Ni2P/CNT has been employed as efficient electrocatalysts for hydrogen and oxygen evolution reactions in acidic and alkaline media respectively. The electrocatalyst has exhibited low overpotential of 137 and 360 mV for hydrogen and oxygen evolution reactions respectively at 10 mA cm?2. Lower Tafel slopes, improved electrochemical active surface area, enhanced stability have also been observed. Advantages of carbon support in terms of activity and stability have been described by comparing with unsupported electrocatalyst.  相似文献   
27.
针对传统解列断面算法复杂度高的问题,提出一种基于改进LFM算法的解列断面搜索方式。首先,基于节点间电气联系和能量转移分布熵完成电网加权复杂网络建模;其次,基于主动解列断面约束条件,对LFM算法做适应性改良;最后,通过改进LFM算法得到解列断面,并在IEEE39节点系统中验证了算法有效性。仿真结果表明,改进LFM算法可充分考虑传统解列断面的约束条件,在算法具有较低复杂度的同时对系统运行状态更强的适应性。  相似文献   
28.
Exploring inexpensive and active bifunctional electrocatalysts to produce hydrogen and oxygen from water at all pHs is highly desirable. Herein, we report a facile one-step method to prepare vertically aligned Co doped MoS2 nanosheets with extended interlayer distance on carbon cloth (Co–MoS2@CC) for full hydrolysis in both alkaline and acidic medium. Co–MoS2@CC exhibits long-term durability with overpotentials of 56.6 mV and 130 mV for hydrogen generation and 242 mV and 201 mV for oxygen production at 10 mA cm?2 in basic and acidic conditions, respectively. Moreover, we achieve low voltages of 1.585 V and 1.55 V in basic and acidic conditions respectively for the overall water splitting. We assume that such excellent property of Co–MoS2@CC may be ascribed to the uncovering of more active sites and high porosity resulted from Co doping, which boosts the conductivity and thus reduces MoS2 hydrogen adsorption free energy in HER, as well as benefits to catalytic active sites in OER. This one-step doping approach opens up new ways to regulate the intrinsic catalytic activity to catalyze total hydrolysis at all PHs.  相似文献   
29.
Highly efficient electrocatalysts composed of earth-abundant elements are desired for water-splitting to produce clean and renewable chemical fuel. Herein, a heteroatomic-doped multi-phase Mo-doped nickel phosphide/nickel sulfide (Mo-NiPx/NiSy) nanowire electrocatalyst is designed by a successive phosphorization and sulfuration method for boosting overall water splitting (both oxygen and hydrogen evolution reactions (HER)) in alkaline solution. As expected, the Mo-NiPx/NiSy electrode possesses low overpotentials both at low and high current densities in HER, while the Mo-NiPx/NiSy heterostructure exhibits high active performance with ultra-low overpotentials of 137, 182, and 250 mV at the current density of 10, 100, and 400 mA cm−2 in 1 m KOH solution, respectively, in oxygen evolution reaction. In particular, the as-prepared Mo-NiPx/NiSy electrodes exhibit remarkable full water splitting performance at both low and high current densities of 10, 100, and 400 mA cm−2 with 1.42, 1.70, and 2.36 V, respectively, which is comparable to commercial electrolysis.  相似文献   
30.
Multi-tag collision imposes a vital detrimental effect on reading performance of an RFID system. In order to ameliorate such collision problem and to improve the reading performance, this paper proposes an efficient tag identification algorithm termed as the Enhanced Adaptive Tree Slotted Aloha (EATSA). The key novelty of EATSA is to identify the tags using grouping strategy. Specifically, the whole tag set is divided into groups by a frame of size F. In cases multiple tags fall into a group, the tags of the group are recognized by the improved binary splitting (IBS) method whereas the rest tags are waiting in the pipeline. In addition, an early observation mechanism is introduced to update the frame size to an optimum value fitting the number of tags. Theoretical analysis and simulation results show that the system throughput of our proposed algorithm can reach as much as 0.46, outperforming the prior Aloha-based protocols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号